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In this supplemental material, we provide additional in-
formation about GRIP as mentioned in the main paper;
this includes details of the method, more qualitative results,
grasp analysis, and the details of the cross-grasp transfer
application. In addition, to better showcase the realism of
the generated hand motions and interaction with 3D objects,
we provide a Supplemental Video. The video summarizes:
(1) the problem and our motivation, (2) our method and key
ideas, and (3) shows many qualitative motions generated
with our method. The video results make our contribution
clear in a way that is hard to capture in print.

1. Data Preparation

The GRAB dataset [51] is used to train our GRIP model.
It is a MoCap dataset that accurately captures whole-body
motions involving the manipulation of 3D objects. The
body is parameterized with SMPL-X [41]. The motions
are performed by 10 participants on 51 objects with differ-
ent shapes and sizes. We withhold 5 objects for the test-set
and use the rest for training and validation of the networks.
CNet data: CNet generates hand interaction motion based
on the body and object motion in a sequence. We use all
the training and test sequences from GRAB for training and
testing CNet, respectively. In addition to hand-object grasp
frames, we consider other motion frames of each sequence
to generalize to pre-grasp and post-grasp hand poses. In to-
tal, we use 1335 motion sequences, performed on 51 3D ob-
jects. To split the dataset, we use the motions performed on
“mug”, “apple”, “camera”, “binoculars”, and “toothpaste”
as the test set,“fryingpan”, “toothbrush”, “elephant”, and
“hand” as the validation set, and the rest as the training set.
In total, we have 329K, 52K, and 24K motion frames for
the training, testing, and validation set, respectively.
RNet data: RNet refines the motions generated from CNet,
therefore, we use the output of CNet as the main data source
for RNet. In addition, to model more severe penetration
and interaction artifacts, we prepare a synthetic dataset by
perturbing the ground-truth data in GRAB. For this, we add

Gaussian noise with a standard deviation of 0.3 to the axis-
angle rotation representation of the hand poses.
Contact Consistency Details: Here we provide more de-
tails about the contact consistency metric. To compute this,
we proceed as follows: Let F denote the set of grasp frames
selected from the ground truth motions. For each grasp
frame f ∈ F , Let Cg(f) denote the contact area on the
object for the generated grasp motion and Ct(f) denote the
contact area on the object from the ground truth. The devi-
ation distance for frame f is computed as:

D(f) = distance(Cg(f), Ct(f))

Then the Contact Consistency is computed as the aver-
age deviation distance over all grasp frames in F :

CC =
1

|F |
∑
f∈F

D(f)

Where:
• |F | represents the number of grasp frames.
• D(f) represents the deviation distance for frame f .
ANet data: ANet is trained to refine noisy arm motion.
To prepare the training data, we add Gaussian noise to the
shoulder and elbow joints of the ground-truth motion data.
The noise is added to the axis-angle rotation of the joints
and has 0.01 and 0.03 standard deviations for the shoulder
and elbow joints, respectively.

2. Arm Denoising Network (ANet)
For an architectural overview of ANet see Fig. S.1. As in-
put, A-Net takes the arm motion and hand sensor features
of the current Ground Truth frame along with five noisy fu-
ture frames. As output it gives the denoised arm poses for
the five future frames, following [52]. To ensure motion
consistency between the successive frames of the denoised
motions, we use the LTC algorithm similar to CNet, as ex-
plained in the main manuscript (Sec. 3.4). For this, the
encoder, EA, maps the input to five latent representations
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Figure S.1. Architecture overview of ANet. Similar to CNet, we use the LTC algorithm to ensure motion consistency of the denoised arm
motions. For this, the encoder maps the input to a global latent code in the current frame and relative latent codes in the future frames.
Then a shared decoder is used to generate the denoised motions.

for each arm pose, as shown in Fig. S.1. Then we apply the
latent temporal consistency algorithm by adding the resid-
ual latent codes, zti , to the global latent code, zt. Finally, we
use a shared decoder, DA, to decode the denoised motions.
Both encoder and decoder have 4 fully-connected residual
layers with skip connections in between.

3. RNet Network

For the architecture overview of RNet please see Fig. S.2.
RNet takes, as input, hand poses and proximity sensor val-
ues of a motion frame and, as output, generates the refined
hand poses for both left and right hand. The network con-
sists of 4 residual blocks with skip connections and an out-
put linear layer.

4. Grasp Transfer (Application)

To test whether our method generalizes well to different ob-
ject shapes and motions, we use GRIP to transfer the input
interaction motion from a source object to a target object.
Given a sequence of body and object motion without hand
poses, we replace the source object with a target object that
is roughly of the same size. We then compute the hand sen-
sor features for the new object geometry and use GRIP to
generate hand interaction poses for the new object.

Qualitative results show that our method is able to gener-
ate realistic hand motions for the target object and general-
izes well to the new object’s shape and motion. In Fig. S.3
we show two examples of the grasp transfer application.
The top row shows that the hands adapt well to the target

object geometry, “elephant”, and the bottom row shows a
change in the grasp type (e.g., thumb contact area) due to
the smaller size of the target object, “sphere”. This is useful
for synthetic data generation because a single motion cap-
ture sequence can be repurposed to generate many different
synthetic human-object interactions. This is also useful for
FX where actors are captured handling a “dummy” object
that is replaced by a 3D graphics object; this is a common
scenario in film production.

5. Runtime

Due to its pure learning-based pipeline, GRIP is able to
generate hand poses rapidly. We find that a full forward
pass of our method (without ANet) on a single V100-16GB
GPU, including the CNet inference, recomputing proxim-
ity sensor values, and RNet forward pass, takes 0.022 sec-
onds, which is equivalent to 45 fps. Therefore, GRIP can
be used to synthesize hands for avatars in interactive appli-
cations like video games and mixed reality settings, which
are mostly running at 30 fps. Please notice that our network
still relies on mean hand-to-object distance in the future 10
frames, which causes a fixed 10-frame latency (1/3 of a sec-
ond) in real-time applications. This is the trade-off to have
more accurate poses with latency instead of real-time per-
formance with lower accuracy, as shown in Tab. 4-right in
the main paper.



Figure S.2. Architecture overview of RNet. As input, it takes hand poses and proximity sensor values, and generates the refined hand
poses. The network consists of 4 residual blocks with skip connections and an output linear layer.

6. Physics Simulation

Our main goal is to generate visually plausible hand-object
interaction motions, however we also evaluate the physical
plausibility of our results, which may be important for the
real-world applications. Following prior methods [22, 23,
28], we evaluate the generated grasps in a Bullet physics
simulation. We fix the body position and apply gravity to
the object. A small object displacement (<1 mm) after 5
physics simulation steps is counted as a “stable” grasp. For
all generated grasps, CNet and RNet have 93% and 97%
stability, respectively. This suggests that the synthesized
hand poses are not just visually pleasing but also physically
realistic.

7. Performance on Large Objects

In Fig. S.4 we show more qualitative results of our method
performance to generate hand grasps for large objects. Note
that these objects have extended 3D structure compared
with all the training objects in the GRAB dataset. What is
important to note here is that our hand sensors are not dis-
tracted by the extended objects due to their locality. Thus
GRIP is able to generate plausible grasps for such objects.
See the Supplemental Video for more examples.

8. Qualitative Results
In Fig. S.5 we show more qualitative results generated on
unseen objects, using GRIP. The top row shows input
body and object motion, and the bottom row shows gener-
ated hand poses. We show close-ups of the generated hand
poses, in single and bimanual scenarios, to show the accu-
racy of the generated grasps. In Fig. S.6 we provide re-
sults for successive frames of a motion sequence to show
the consistency of the generated hand poses over time. Ad-
ditionally, the results show that our method is able to refine
the noisy arm poses from the InterCap dataset. For more
results, please see our Supplemental Video.

In Fig. S.7, we show representative scores for the Manip-
Net grasps from our user study. These results confirm sev-
eral limitations of ManipNet which GRIP addresses these,
making it easy to apply in real-world scenarios.

9. Grasp Analysis
To further evaluate the quality of the generated grasps from
GRIP, we compare the aggregated contact heatmaps from
our method with GRAB [51]. For each motion frame
in the test set, we compute the contact vertices on both
hands based on their distance to the object surface, simi-
lar to GRAB. We then aggregate the contact maps across all
frames to compute the overall contact heatmap. Figure S.8



Figure S.3. Grasp transfer from a source object to a target one. Given a sequence of body and object motion without hand poses, we replace
the source object with a target one and use GRIP to generate hand interaction poses for the new object. The top row shows grasp transfer
from “camera” to an “elephant” geometry, and the bottom row shows grasp transfer from an “apple” to a small “sphere”. Notice how the
hands adapt to the new object shape (top row) and the change in the grasp type (bottom row).

Figure S.4. GRIP’s performance to generate hand grasps for large objects. We generate hand poses on the unseen large objects from
Intercap (left) and MoGaze (right) datasets. These objects have larger 3D structures compared to the 3D objects during training, however,
our hand sensors are not distracted by the extended objects due to their locality. Thus, GRIP is able to generate plausible grasps for such
objects.

(top) shows the contact heatmap from GRAB and (bottom)
shows the heatmaps for GRIP. Areas with a high likelihood
of contact are shown with “hot” (red) colors and with a low
likelihood of contact are shown with “cool” (blue) colors.
We see that GRIP contact maps follow a similar pattern to
GRAB, and have higher contact likelihood on the fingertips.
The similarity suggests that generated grasps exhibit similar
contacts as real grasps.



Figure S.5. Generated results with GRIP for unseen objects. (Top row) input body and object, (bottom row) generated hand poses. We
show close-ups of the generated hand poses in single and bimanual scenarios, to show the accuracy of the generated grasps.

Figure S.6. Generated hand motions using GRIP. (Top row) input body and object motion. (Bottom row) generated hand poses. We provide
results for successive frames of the same motion to show the consistency of the generated motions over time. Please see the Supplemental
Video.



Figure S.7. representative scores for ManipNet [58] grasps from our user study.

Figure S.8. Comparison of the contact heatmaps from GRAB and GRIP. We compute contact vertices on both left and right hand and
aggregate them across all frames. Results show that GRIP contact maps are similar to GRAB, which is indicative of the realism of the
generated hand grasps.
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