ps Thumb sm thumb img 1090
Matthew Loper (Project leader)
Alumni
ps Thumb sm thumb varun
Varun Jampani (Project leader)
Alumni
ps Thumb sm petergehler copy
Peter Vincent Gehler
Research Group Leader
ps Thumb sm ports 160922 1261headcrop2
Michael Black
Director
2 results

2015


Thumb md invgraphicsdemo
The Informed Sampler: A Discriminative Approach to Bayesian Inference in Generative Computer Vision Models

Jampani, V., Nowozin, S., Loper, M., Gehler, P. V.

In Computer Vision and Image Understanding, Special Issue on Generative Models in Computer Vision and Medical Imaging, 136, pages: 32-44, Elsevier, July 2015 (inproceedings)

Abstract
Computer vision is hard because of a large variability in lighting, shape, and texture; in addition the image signal is non-additive due to occlusion. Generative models promised to account for this variability by accurately modelling the image formation process as a function of latent variables with prior beliefs. Bayesian posterior inference could then, in principle, explain the observation. While intuitively appealing, generative models for computer vision have largely failed to deliver on that promise due to the difficulty of posterior inference. As a result the community has favored efficient discriminative approaches. We still believe in the usefulness of generative models in computer vision, but argue that we need to leverage existing discriminative or even heuristic computer vision methods. We implement this idea in a principled way in our informed sampler and in careful experiments demonstrate it on challenging models which contain renderer programs as their components. The informed sampler, using simple discriminative proposals based on existing computer vision technology achieves dramatic improvements in inference. Our approach enables a new richness in generative models that was out of reach with existing inference technology.

arXiv-preprint pdf DOI Project Page [BibTex]

2015

arXiv-preprint pdf DOI Project Page [BibTex]

2014


Thumb md opendr
OpenDR: An Approximate Differentiable Renderer

Loper, M. M., Black, M. J.

In Computer Vision – ECCV 2014, 8695, pages: 154-169, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, September 2014 (inproceedings)

Abstract
Inverse graphics attempts to take sensor data and infer 3D geometry, illumination, materials, and motions such that a graphics renderer could realistically reproduce the observed scene. Renderers, however, are designed to solve the forward process of image synthesis. To go in the other direction, we propose an approximate di fferentiable renderer (DR) that explicitly models the relationship between changes in model parameters and image observations. We describe a publicly available OpenDR framework that makes it easy to express a forward graphics model and then automatically obtain derivatives with respect to the model parameters and to optimize over them. Built on a new autodiff erentiation package and OpenGL, OpenDR provides a local optimization method that can be incorporated into probabilistic programming frameworks. We demonstrate the power and simplicity of programming with OpenDR by using it to solve the problem of estimating human body shape from Kinect depth and RGB data.

pdf Code Chumpy Supplementary video of talk DOI Project Page [BibTex]

2014

pdf Code Chumpy Supplementary video of talk DOI Project Page [BibTex]