Header logo is ps

ps Thumb sm pc1a5918
Anurag Ranjan
Ph.D. Student
ps Thumb sm ports 160922 1261headcrop2
Michael Black
Director
ps Thumb sm thumb jonas winter 1
Jonas Wulff
Alumni
ps Thumb sm david hoffmann
David Hoffmann
Ph.D. Intern
ps Thumb sm dimitris photographermpi 2
Dimitrios Tzionas
Research Scientist
ps Thumb sm img 20170401 214555  1
Siyu Tang
Research Group Leader
ps Thumb sm me pic large
Noemployeeimage sm
Yana Hasson
INRIA
Noemployeeimage sm
Gül Varol
INRIA
no image
Igor Kalevatykh
INRIA
Noemployeeimage sm
Ivan Laptev
INRIA
5 results

2019


Thumb xl obman new
Learning joint reconstruction of hands and manipulated objects

Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M. J., Laptev, I., Schmid, C.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
Estimating hand-object manipulations is essential for interpreting and imitating human actions. Previous work has made significant progress towards reconstruction of hand poses and object shapes in isolation. Yet, reconstructing hands and objects during manipulation is a more challenging task due to significant occlusions of both the hand and object. While presenting challenges, manipulations may also simplify the problem since the physics of contact restricts the space of valid hand-object configurations. For example, during manipulation, the hand and object should be in contact but not interpenetrate. In this work, we regularize the joint reconstruction of hands and objects with manipulation constraints. We present an end-to-end learnable model that exploits a novel contact loss that favors physically plausible hand-object constellations. Our approach improves grasp quality metrics over baselines, using RGB images as input. To train and evaluate the model, we also propose a new large-scale synthetic dataset, ObMan, with hand-object manipulations. We demonstrate the transferability of ObMan-trained models to real data.

pdf suppl link (url) Project Page Project Page [BibTex]

2019

pdf suppl link (url) Project Page Project Page [BibTex]

2018


Thumb xl persondetect  copy
Learning Human Optical Flow

Ranjan, A., Romero, J., Black, M. J.

In 29th British Machine Vision Conference, September 2018 (inproceedings)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Given this, we devise an optical flow algorithm specifically for human motion and show that it is superior to generic flow methods. Designing a method by hand is impractical, so we develop a new training database of image sequences with ground truth optical flow. For this we use a 3D model of the human body and motion capture data to synthesize realistic flow fields. We then train a convolutional neural network to estimate human flow fields from pairs of images. Since many applications in human motion analysis depend on speed, and we anticipate mobile applications, we base our method on SpyNet with several modifications. We demonstrate that our trained network is more accurate than a wide range of top methods on held-out test data and that it generalizes well to real image sequences. When combined with a person detector/tracker, the approach provides a full solution to the problem of 2D human flow estimation. Both the code and the dataset are available for research.

video code pdf link (url) Project Page Project Page [BibTex]

2018

video code pdf link (url) Project Page Project Page [BibTex]

2017


Thumb xl surrealin
Learning from Synthetic Humans

Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M. J., Laptev, I., Schmid, C.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
Estimating human pose, shape, and motion from images and videos are fundamental challenges with many applications. Recent advances in 2D human pose estimation use large amounts of manually-labeled training data for learning convolutional neural networks (CNNs). Such data is time consuming to acquire and difficult to extend. Moreover, manual labeling of 3D pose, depth and motion is impractical. In this work we present SURREAL (Synthetic hUmans foR REAL tasks): a new large-scale dataset with synthetically-generated but realistic images of people rendered from 3D sequences of human motion capture data. We generate more than 6 million frames together with ground truth pose, depth maps, and segmentation masks. We show that CNNs trained on our synthetic dataset allow for accurate human depth estimation and human part segmentation in real RGB images. Our results and the new dataset open up new possibilities for advancing person analysis using cheap and large-scale synthetic data.

arXiv project data Project Page Project Page [BibTex]

2017

arXiv project data Project Page Project Page [BibTex]

2012


Thumb xl sinteleccv2012crop
A naturalistic open source movie for optical flow evaluation

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 611-625, Part IV, LNCS 7577, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Ground truth optical flow is difficult to measure in real scenes with natural motion. As a result, optical flow data sets are restricted in terms of size, complexity, and diversity, making optical flow algorithms difficult to train and test on realistic data. We introduce a new optical flow data set derived from the open source 3D animated short film Sintel. This data set has important features not present in the popular Middlebury flow evaluation: long sequences, large motions, specular reflections, motion blur, defocus blur, and atmospheric effects. Because the graphics data that generated the movie is open source, we are able to render scenes under conditions of varying complexity to evaluate where existing flow algorithms fail. We evaluate several recent optical flow algorithms and find that current highly-ranked methods on the Middlebury evaluation have difficulty with this more complex data set suggesting further research on optical flow estimation is needed. To validate the use of synthetic data, we compare the image- and flow-statistics of Sintel to those of real films and videos and show that they are similar. The data set, metrics, and evaluation website are publicly available.

pdf dataset youtube talk supplemental material Project Page Project Page [BibTex]

2012

pdf dataset youtube talk supplemental material Project Page Project Page [BibTex]


Thumb xl sintelworkshop
Lessons and insights from creating a synthetic optical flow benchmark

Wulff, J., Butler, D. J., Stanley, G. B., Black, M. J.

In ECCV Workshop on Unsolved Problems in Optical Flow and Stereo Estimation, pages: 168-177, Part II, LNCS 7584, (Editors: A. Fusiello et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

pdf dataset poster youtube Project Page [BibTex]

pdf dataset poster youtube Project Page [BibTex]